منابع مشابه
Roton-roton crossover in strongly correlated dipolar Bose-Einstein condensates.
We study the pair correlations and excitations of a dipolar Bose gas layer. The anisotropy of the dipole-dipole interaction allows us to tune the strength of pair correlations from strong to weak perpendicular and weak to strong parallel to the layer by increasing the perpendicular trap frequency. This change is accompanied by a roton-roton crossover in the spectrum of collective excitations, f...
متن کاملSpectroscopic Implications of the Coupling of Unquenched Electronic Angular Momen- Tum to Rotation in the Oh–acetylene Complex
متن کامل
Softening of roton and phonon modes in a Bose-Einstein condensate with spin-orbit coupling.
Roton-type excitations usually emerge from strong correlations or long-range interactions, as in superfluid helium or dipolar ultracold atoms. However, in a weakly short-range interacting quantum gas, the recently synthesized spin-orbit (SO) coupling can lead to various unconventional phases of superfluidity and give rise to an excitation spectrum of roton-maxon character. Using Bragg spectrosc...
متن کاملRotation intrinsic spin coupling—the parallelism description
For the Dirac particle in the rotational system, the rotation induced inertia effect is analogously treated as the modification of the “spin connection” on the Dirac equation in the flat spacetime, which is determined by the equivalent tetrad. From the point of view of parallelism description of spacetime, the obtained torsion axial-vector is just the rotational angular velocity, which is inclu...
متن کاملOn the Spin-rotation-gravity Coupling
The inertial and gravitational properties of intrinsic spin are discussed and some of the recent work in this area is briefly reviewed. The extension of relativistic wave equations to accelerated systems and gravitational fields is critically examined. A nonlocal theory of accelerated observers is presented and its predictions are compared with observation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2004
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.93.250401